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The paper describes the components of an artificial intelligence based system intended to control the
manufacturing processes of composite materials with polymeric matrix. Based on previous results in which
neural networks were trained initially with simulated data and then continued to acquire experimental
values over Internet for refining their knowledge, the system includes updated state-of-the-art data acquisition
components, improved statistical data processing capabilities and the ability of real-time controlling the

manufacturing equipment.
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The composite materials with polymeric matrix are
generally obtained by moulding and rarely by cutting or
other processes. Either liquid moulding (specifically Resin
Transfer Moulding), injection moulding or compression
moulding, each technology is chosen according to the
mechanical, geometrical or cost characteristics imposed
for the final product.

Obtaining the composite materials with polymeric
matrix is a continuous process, the critical step being the
manufacturing cycle, the composite’s polymerisation,
when the temperature variation, expressed by amplitude
and time, represents the most important parameter and
influences the product quality.

Designing the optimum manufacturing cycle for
obtaining the necessary material quality during a
minimised time is a goal which can not be easily reached
due mainly to the intrinsec anisothropy of the composite
materials and to the differences between various
manufacturing methods or even producers.

Actually the “trial-and-error” method is largely used,
establishing the manufacturing cycle based on
experimental research results which are used for
evaluating several process parameters and defining various
numerical models. Reducing the process duration is then
obtained by applying optimisation techniques on the
process models.

The Loos-Springer model [1] is able to simulate the time
variations for the composite’s temperature in different
points and also for the internal pressure, extent of cure,
resin viscosity, number of compacted layers, material
thickness and residual stress in each layer.

The Ciriscioli model [2], which in the case of thin layers
is also based on empirical methods, is also providing
parameters like temperature, extent of cure, viscosity,
compactness and residual stress.

Both mathematical models, even confirmed by
experiments, have, like many others, a high complexity
degree, and using them for simulations require an extended
amount of time.

Using the above mentioned models, simulations were
performed by the authors [3] and a data base containing
this type of results was created. Figure 1 is presenting the
simulated temperature variation over time for an RTM
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obtained vinilester with fiberglass matrix, while in figure 2
the extent of cure’s variation is presented for the same
material.

The results obtained during the mathematical models
simulations were used for training a neural network with
two neurons in the input layer and other two neurons in the
output one, which basically is receiving data about material
thickness and processing time, generating then data about
temperature and extent of cure.

After establishing its architecture, using the back-
propagation algorithm in the Stuttgart Neural Network
Simulator (SNNS), the network was trained using the
simulated patterns during almost 5000 training cycles,
connection weigjhts being thus adjusted and the sum of
the squares of the errors minimised.

After its validation and testing, the trained neural network
was used for simulating RTM manufacturing cycles in the
same conditions like those used by the numerical models.

Data obtained both for temperature and extent of cure
simulations are presented in figure 3 and 4 respectively.

The correspondence between the results is obvious, but
the time in which the simulation was performed by the
neural network is much smaller than that needed for the
numerical models, making this method suitable to be used
in real-time systems.

In previous works [4], the authors designed a data
acquisition system which was monitoring the temperature
during a manufacturing process and was passing the data,
over the Internet, to a neural network for further training it
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Fig. 1. Simulated temperature variation over time for an RTM
obtained vinilester with fiberglass matrix
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Fig. 2. Simulated extent of cure variation over time for an RTM

obtained vinilester with fiberglass matrix
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Fig. 3. Neural network simulated temperature variation over time
for an RTM obtained vinilester with fiberglass matrix
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Fig. 4. Neural network simulated extent of cure variation over time
for an RTM obtained vinilester with fiberglass matrix

using the BFGS (Broyden, Fletcher, Goldfarb, Shanno)
method. The data acquisition system could be controlled
not only from the local computer, close to the process, but
also from the client remote application where the neural
network was based.

The remote neural network was able to further simulate
the variations of the process temperature and extent of
cure for different process parameters (figs. 5 and 6).

The previous works described above did not include any
feedback loop. Even if the neural network was trained using
experimental data and was able to simulate the process
parameters for different conditions, the simulations results
were not used to predict the evolution or to compare them
with the data from an ongoing process.

Also, statistical processing of the experimental data was
not performed in the neural network based system,
basically because the system was used in a limited number
of experiments which were not able to provide enough
information.
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Fig. 5. Simulated temperature variation over time by a neural
network trained with experimental data
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Fig. 6. Simulated extent of cure variation over time by a neural
network trained with experimental data
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Fig. 7. Temperature data obtained by infrared termography

Some works for including statistical data processing
were performed by the authors in a different type of process
[5], when milling the peripheral surfaces of composite
materials with polymeric matrix. Thermal phenomena
during the milling process have a significant influence on
the material, so its evolution has to be monitored and
controlled by establishing the values of the cutting
parameters.

Temperature data were obtained by infrared
termography during milling of composite materials with
polymeric matrix reinforced with fiberglass (fig. 7).

For the statistical processing of the maximum
temperature values, procedures were developed for
identifying and eliminating the blunders (gross errors) and
also for checking the randomness of the experimental data,
following the algorithms described in [6]. Experimental
data was further processed for establishing a multivariable
regression function estimating the process temperature
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Fig. 8. The general architecture of the real-time system 3
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Fig. 9. Hardware configuration of data acquisition and process
control systems

Fig. 11. Linear regression function applied to the first data subset
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Fig. 10. Fifth degree polynomial regression function applied to the
complete dataset

from the cutting speed, feed speed, axial cutting depth
and radial cutting depth speed.

Experimental part

The general architecture of the real-time system to be
used for the control of the polymerization process is
described in figure 8. The architecture involves first a data
acquisition system for obtaining the measured values of
the process parameters. Through a communication
system (Internet based in most of the cases), the measured
data is send and stored in a data and knowledge base for
further processing. When enough relevant data is available,
a statistical data processing module is performing a series
of statistical tests and analysis routines. The data and
knowledge base is also accessed by an artificial
intelligence module, which is interpreting different data
sets and is generating conclusions about the ways in which
the process parameters should change their values in
certain conditions. While the polymerization process is
running, the conclusions generated by the artificial
intelligence module are sent to the process control system
as reference values to be followed by the process
parameters. The process control system is finally receiving
the real-time measured values from the data acquisition
system, is comparing them with the references and is
generating control commands following certain control
algorithms.

Ahardware configuration (fig. 9) was designed to include
not only the data acquisition system, but also the process
control system and the communication system functions.
The state-of-the-art real-time data acquisition and control
system was designed for high-precision temperature
measurements in 16 points. Modules for allowing the
system to acquire data from other types of transducers
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Fig. 12. Fourth degree polynomial regression function applied to
the second data subset
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Fig. 13. Fourth degree polynomial regression function applied to
the third data subset

were also included, together with modules for generating
the necessary control signals. The system has a high data
storage capacity and state-of-the-art performance
regarding data communication over Ethernet channels.

Results and discussions

The previously developed procedures for the statistical
processing of the maximum temperature values were
updated and adapted for the new system architecture. A
procedure for evaluating the random errors in the
experimental data and validating the expression of their
probability density was added to the statistical data
processing module.

Experimental values from the data acquisition system,
eventually statistically processed, were passed to the neural
network, enriching its knowledge base.

For the estimated temperature variations, generated by
the neural network as sets of discrete points, to be used as
references by the control system, analytical expressions
had to be defined using regression techniques.

Because the experimental data may not be all the time
adequate for applying multivariable regression function
methods, it was developed a procedure, based on the
Hooke - Jeeves algorithm [7], for estimating the variation
of the process temperature.
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Fig. 14. Fourth degree polynomial regression function applied to

the fourth data subset

Using a fifth degree polynomial for describing the
temperature variation (fig. 10) did not led to satisfactory
results not even after 20000 iterations.

It was then decided to split the temperature variation
into several domains and to analyse it separately, better
results being obtained as can be seen in figures 11 to 14.

The equations describing the regression functions from
figures 11 to 14 are:

y =19.583 + 3.829 - x (1)
y = 48527 +1.857 - x — 0.121 - x2
+3.515-1073 - x3 — 3.72-10~5 - x* @)
y =3.491-10% — 4.129-10% - x 3)
+1.832-10% - x% — 3.604 - x*
+2.655-1072 - x*
=1.993-10% — 1.525-10% - x
Y )

+4.512-x% —5.921-1072-x3
+2.906-107% - x*

Controlling the manufacturing equipment to follow the
reference equations (1) to (4) was achieved using a simple
PID algorithm [8].

The PID algorithm being not yet enough tuned, the
preliminary results are still satisfactory, following the
general trend of the temperature variation mode (fig. 15).

Conclusions

The proposed hardware and software architecture of
the real-time control system is proving to be able to acquire
experimental data, not only from one equipment but from
a set of processes distributed over the Internet, to perform
an initial set of statistical tests for error removal, to train its

346

http://www.revmaterialeplastice.ro

‘ Setpoint E'

3 Pracess vasiahie E

$Z

®

Termperature [}

824

Fig. 15. Setpoint and process variable during the controlling of
manufacturing equipment

artificial intelligence component for expanding its
knowledge base in the field, to process large sets of data
in a short time for achieving the compatibility between the
neural network and the control system and to provide real-
time reference values for assuring the optimal working
parameters of the polymerization process.
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